skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "García Trillos, Nicolás"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We establish an equivalence between a family of adversarial training problems for non-parametric binary classification and a family of regularized risk minimization problems where the regularizer is a nonlocal perimeter functional. The resulting regularized risk minimization problems admit exact convex relaxations of the type $$L^1+\text{(nonlocal)}\operatorname{TV}$$, a form frequently studied in image analysis and graph-based learning. A rich geometric structure is revealed by this reformulation which in turn allows us to establish a series of properties of optimal solutions of the original problem, including the existence of minimal and maximal solutions (interpreted in a suitable sense) and the existence of regular solutions (also interpreted in a suitable sense). In addition, we highlight how the connection between adversarial training and perimeter minimization problems provides a novel, directly interpretable, statistical motivation for a family of regularized risk minimization problems involving perimeter/total variation. The majority of our theoretical results are independent of the distance used to define adversarial attacks. 
    more » « less
  2. Abstract In this work we study statistical properties of graph-based clustering algorithms that rely on the optimization of balanced graph cuts, the main example being the optimization of Cheeger cuts. We consider proximity graphs built from data sampled from an underlying distribution supported on a generic smooth compact manifold$${\mathcal {M}}$$ M . In this setting, we obtain high probability convergence rates for both the Cheeger constant and the associated Cheeger cuts towards their continuum counterparts. The key technical tools are careful estimates of interpolation operators which lift empirical Cheeger cuts to the continuum, as well as continuum stability estimates for isoperimetric problems. To the best of our knowledge the quantitative estimates obtained here are the first of their kind. 
    more » « less